FIBERGLASS CABLE TRAYS

Cable trays are made of a special polymeric material which does not sustain combustion.

Due to the unique properties of this material usage of cable support system ensures minimum maintenance costs.

As a result of high level of protection from aggressive environments the performance parameters of polymeric cable trays exceed those of traditional trays made of zinc plated and stainless steel.

Advantages of composite cable tray system:

- No need to earth the route composite material is a dielectric and does not conduct electricity.
- No corrosion unlike traditional tray materials (metals, zinc plated metals) the composite material
 is not susceptible to corrosion and to damage from increased humidity (e.g. atmosphere
 precipitation, condensation, rich moist air).
- Resistance to aggressive environments the material of all cable tray system elements is resistant
 to damage from aggressive substances in air and does not react with concentrated solutions of
 aggressive chemicals.
- Light weight lower by 70% as compared to identical systems made of metals.
- All-purpose suitable for operation at consumer goods industry and heavy industry facilities.
- Affordable price due to low costs of transportation, storage, installation and service and due to the long service life of cable trays.

Technical information:

Straight section length

For trays with wall height 60mm (2.36 in), straight section length: 3000mm (118.11 in), 6000mm (236.22 in) For trays with wall height 80mm (3.15 in), straight section length: 3000mm (118.11 in), 6000mm (236.22 in) For trays with wall height 100mm (3.94 in), straight section length: 3000mm (118.11 in), 6000mm (236.22 in) For trays with wall height 150mm (5.91 in), straight section length: 3000mm (118.11 in), 6000mm (236.22 in) For trays with wall height 200mm (7.87 in), straight section length: 3000mm (118.11 in), 6000mm (236.22 in)

Bolted joint diameter:

Joining sections and shaped elements together: M6;

Securing to supporting structures: M6.

Chemical stability

Information:

PE - Polyester Resin is an alternative to traditional hot dipped galvanized products. VE - Vinyl Ester Resin is an alternative to traditional stainless steel products.

positively

neutrally

negatively

								-	
	IS 20°C (68°F)	O 50°C (122°F)	VE 20°C (68°F)	D411 50°C (122°F)		Lance Control	50°C (122°F)		D411 50°C (122°F
AgNO₃		<u> </u>			CH₃OH, 100%				<u> </u>
AICI ₃					CO2				
AI(NO ₃) ₃					CuCL, CuCL₂				
Al ₂ (SO4) ₃					CuSO ₄				
BaCl ₂					CS ₂ , 100%				
BaCO ₃					FeCl₂				
Ba(OH)₂					Fe(NO ₃) ₃				
Ba(NO ₃) ₂					FeSO ₄				
BaS					Hbr, 10%				
BaSO ₄					HCN, 10%				
CaCl ₂					HCI, 5%				
Ca(CIO) ₂ , 15%					HCI, 20%				
Ca(OH)₂, 20%					H ₂ CrO ₄ , 5%				
Ca(NO ₃) ₂					H ₂ CrO ₄ , 10%		•		
CCI ₄ , 100%					HNO ₃ , 5%				
CH ₃ -COOH, 5%					H ₂ O ₂ , 3%				
CH ₃ -COOH, 50%					H ₂ O+Cl ₂				
CH ₃ -COOH, 75%					H ₃ PO ₄₊ 10%				
C₄H₃O MEK					H ₂ SO ₄ , 10%				
CHOOH, 10%					H ₂ SO ₄ , 30%				
C₂H₅OH, 10%					KCI				

Vinyl ether resin has higher resistance to alkali and acids than polyester resin and can be used in highly aggressive environment.

	50°C (122°F)	VE I 20°C (68°F)	D411 50°C (122°F)		IS 20°C (68°F)	0 50°C (122°F)	D411 50°C (122°F)
KOH, 5%				NaOH, 10%	<u> </u>		
KOH, 10%				NaOH, 25%			
KOH, 5%				NaOCI, 20%			
KOH, 50%				Na₂SO₄			
K ₂ CO ₃ , 10%				Na ₂ SO ₃			
KNO ₃				Na ₂ S ₂ O ₃			
KMnO ₄				NH ₃ , 1%			
K₂SO₄				NH ₄ Br			
MgCl2				NH ₄ CI			
MgCO3				NH ₄ F			
Mg(NO ₃) ₂				(NH ₄) ₂ CO ₃			
MgSO₄				NH ₄ NO ₃			
NaBr				(NH ₄) ₃ PO ₄			
NaCl				(NH ₄) ₂ SO ₄			
NaCN				NiCl ₂			
Na ₂ CO ₃ , 10%				Ni(NO ₃) ₂			
NaHCO ₃ , 10%				NiSO ₄			
NaHSO ₃				ZnCl ₂			
NaNO ₃				Zn5O ₄			
NaNO ₂							
NaOH, 5%							